Почему яйцеклетка начинает делиться на два эмбриона

После оплодотворения зигота начинает делиться. Дроблением называют ряд последовательных митотических делений зиготы, в результате которых огромный объем цитоплазмы яйца разделяется на многочисленные, содержащие ядра клетки меньшего размера (рис. 312). В результате дробления образуются клетки, которые называют бластомерами. Важной отличительной особенностью дробления от обычного деления является то, что вновь образовавшиеся бластомеры не увеличиваются в размерах. Это осуществляется путем выпадения интерфазного периода роста между делениями. При этом синтетический период интерфазы начинается в телофазе предшествующего митотического цикла. Таким образом, количество бластомеров постепенно увеличивается, а их общий объем практически не изменяется. Цитоплазма клеток при дроблении делится путем возникновения впячиваний оболочки клетки (борозды дробления).

Однако дробление не может происходить бесконечно. Так как каждое деление дробления сопровождается уменьшением размера клетки, постепенно происходит повышение величины ядерно-цитоплазматического отношения, сниженного в период роста ооцита. Наступает момент, когда это отношение достигает значения, типичного для соматических клеток данного вида.

Биологическое значение процесса дробления сводится к следующему:

© благодаря повторяющимся циклам репродукции, происходит размножение генотипа зиготы;

© происходит накопление клеточной массы для дальнейших преобразований, т.е. зародыш из одноклеточного превращается в многоклеточный.

Деление бластомеров бывает синхронным и несинхронным. У большинства видов оно несинхронно с самого начала развития, у других становится таковым уже после первых делений.

Характер дробления определяется, прежде всего, строением яйцеклетки, главным образом, количеством желтка и особенностями его распределения в цитоплазме. В этой связи по способу дробления выделяют два основных типа яиц (рис. 313):

Полным дробление называется тогда, когда цитоплазма яйцеклетки полностью разделяется на бластомеры. Оно может быть:

© равномерным, при котором все образовавшиеся бластомеры имеют одинаковые размеры и форму; оно характерно для алецитальных и изолецитальных яйцеклеток;

Частичное дробление — тип дробления, при котором цитоплазма яйцеклетки не полностью разделяется на бластомеры. Одним из видов частичного дробления является дискоидальное, при котором дроблению подвергается только лишенный желтка участок цитоплазмы у анимального полюса, где находится ядро. Участок цитоплазмы, подвергшийся дроблению, называется зародышевым диском. Этот тип дробления характерен для резко телолецитальных яиц с большим количеством желтка (рептилии, птицы, рыбы);

Дробление у представителей разных групп животных имеет свои особенности, однако завершается оно образованием близкой по строению структуры — бластулы.

Бластула — это однослойный зародыш. Она состоит из слоя клеток — бластодермы, ограничивающей полость — бластоцель, или первичную полостью тела. Бластула формируется начиная с ранних этапов дробления, благодаря расхождению бластомеров. Возникающая при этом полость заполняется жидкостью.

Всегда ли Вы беспрекословно доверяете назначению врачей/гинекологов?
Да, конечно, они же учились долго и много практиковались.
43.48%
Не всегда, проверяю отзывы на лекарства и советы в интернете и только потом начинаю лечение.
25.36%
Доверяю, но в спорных/сложных ситуациях консультируюсь с врачом, который имеют более высокую квалификацию и только потом приступаю.
31.16%
Проголосовало: 138

Строение бластулы во многом зависит от типа дробления (рис. 314).

© Целобластула (типичная бластула). Образуется при равномерном дроблении. Имеет вид однослойного пузырька с большим бластоцелем (у ланцетника).

© Амфибластула. При дроблении телолецитальных яиц бластодерма построена из бластомеров разного размера: микромеров на анимальном и макромеров на вегетативном полюсах. Бластоцель при этом смещается в сторону анимального полюса (у земноводных).

© Дискобластула. Образуется при дискоидальном дроблении. Полость бластулы имеет вид узкой щели, находящейся под зародышевым диском (у птиц).

© Бластоциста. Представляет собой однослойный пузырек, заполненный жидкостью, в котором различают эмбриобласт (из него развивается зародыш) и трофобласт, обеспечивающий питание зародыша (у млекопитающих).

После того как сформировалась бластула, начинается новый этап эмбриогенеза — гаструляция (образование зародышевых листков). Для гаструляции характерны интенсивные перемещения отдельных клеток и клеточных масс. Деление клеток при гаструляции отсутствует или выражено очень слабо. В результате гаструляции образуется двухслойный, а затем трехслойный зародыш (у большинства животных) — гаструла (рис. 315). Первоначально образуются наружный (эктодерма) и внутренний (энтодерма). Позже между экто- и энтодермойзакладывается третий зародышевый листок — мезодерма.

Зародышевые листки — это отдельные пласты клеток, занимающие определенное положение в зародыше и дающие начало соответствующим органам и системам органов. Зародышевые листки возникают не только в результате перемещения клеточных масс, но и в результате дифференциации сходных между собой сравнительно однородных клеток бластулы. В процессе гаструляции зародышевые листки занимают положение, соответствующее плану строения взрослого организма. Дифференциация — это процесс появления и нарастания морфологических и функциональных различий между отдельными клетками и частями зародыша.

© Инвагинация. При данном способе один из участков бластодермы начинает впячиваться внутрь бластоцеля (у ланцетника). При этом бластоцель практически полностью вытесняется. Образуется двухслойный мешок, наружная стенка которого является первичной эктодермой, а внутренняя — первичной энтодермой, выстилающей полость первичной

кишки, или гастроцель. Отверстие, при помощи которого полость сообщается с окружающей средой, называется бластопором, или первичным ртом. У представителей разных групп животных судьба бластопора различна. У первичноротых животных он превращается в ротовое отверстие. У вторичноротых бластопор зарастает, и на его месте нередко возникает анальное отверстие, а ротовое отверстие прорывается на противоположном полюсе (переднем конце тела).

© Иммиграция — выселение части клеток бластодермы в полость бластоцеля (у высших позвоночных). Из них образуется энтодерма.

© Деламинация встречается у животных, имеющих бластулу без бластоцеля (у птиц). При таком способе гаструляции клеточные перемещения минимальны или совсем отсутствуют, так как происходит расслоение — наружные клетки бластулы преобразуются в эктодерму, а внутренние формируют энтодерму.

© Эпиболия происходит, когда более мелкие бластомеры анимального полюса дробятся быстрее и обрастают более крупные бластомеры вегетативного полюса, образуя эктодерму (у земноводных). Клетки вегетативного полюса дают начало внутреннему зародышевому листку — энтодерме.

Описанные способы гаструляции редко встречаются в чистом виде и обычно наблюдаются их сочетания (инвагинация с эпиболией у амфибий или деляминация с иммиграцией у иглокожих).

Чаще всего клеточный материал мезодермы входит в состав энтодермы. Он впячивается в бластоцель в виде карманообразных выростов, которые затем отшнуровываются.

При образовании мезодермы происходит образование вторичной полости тела, или целома.

Процесс формирования органов в эмбриональном развитии называют органогенезом. В построении любого органа участвуют несколько тканей. Поэтому стадия органогенеза является и стадией гистогенеза.

В органогенезе можно выделить две фазы:

© нейруляция — образование комплекса осевых органов (нервная трубка, хорда, кишечная трубка и мезодерма сомитов), в который вовлекается почти весь зародыш;

Читайте также:  7 Дней Задержки Тест Отрицательный Болит Грудь

© построение остальных органов, приобретение различными участками тела типичной для них формы и черт внутренней организации, установление определенных пропорций (пространственно ограниченные процессы).

По теории зародышевых листков Карла Бэра, возникновение органов обусловлено преобразованием того или иного зародышевого листка — экто-, мезо- или энтодермы. Некоторые органы могут иметь смешанное происхождение, то есть они образованы при участии сразу несколько зародышевых листков. Например, мускулатура пищеварительного тракта является производным мезодермы, а его внутренняя выстилка — производное энтодермы. Однако, несколько упрощая, происхождение основных органов и их систем все-таки можно связать с определенными зародышевыми листками.

является одним из наиболее важных во всем развитии. Сначала в области нейроэктодермы происходит уплощение клеточного пласта, что приводит к образованию нервной пластинки. Затем края нервной пластинки утолщаются и приподнимаются, образуя нервные валики. В центре пластинки за счет перемещения клеток по средней линии возникает нервный желобок, разделяющий зародыш на будущие правую и левую половины. Нервная пластинка начинает складываться по средней линии. Края ее соприкасаются, а затем смыкаются. В результате этих процессов возникает нервная трубка с полостью — невроцелем.

Смыкание валиков происходит сначала в средней, а затем в задней части нервного желобка. В последнюю очередь это происходит в головной части, которая по ширине превосходит другие. Передний, расширенный отдел в дальнейшем образует головной мозг, остальная часть нервной трубки — спинной. В результате нервная пластинка превращается в нервную трубку, лежащую под эктодермой.

В ходе нейруляции часть клеток нервной пластинки не входят в состав нервной трубки. Они образуют ганглиозную пластинку, или нервный гребень, — скопление клеток вдоль нервной трубки. Позднее эти клетки мигрируют по всему зародышу, образуя клетки нервных узлов, мозгового вещества надпочечников, пигментные клетки и т.п.

Образование систем органов

Из материала эктодермы, помимо нервной трубки, развиваются эпидермис и его производные (перо, волосы, ногти, когти, кожные железы и т.д.), компоненты органов зрения, слуха, обоняния, эпителий ротовой полости, эмаль зубов.

Мезодермальные и энтодермальные органы формируются не после образования нервной трубки, а одновременно с ней. Практически одновременно с нейруляцией происходят процессы закладки мезодермы и хорды. Вначале вдоль боковых стенок первичной кишки путем выпячивания энтодермы образуются карманы, или складки. Участок энтодермы, расположенный между этими складками, утолщается, прогибается, сворачивается и отшнуровывается от основной массы энтодермы. Так появляется хорда. Возникшие карманообразные выпячивания энтодермы отшнуровываются от первичной кишки и превращаются в ряд сегментарно-расположенных замкнутых мешков, называемых также целомическими мешками. Их стенки образованы мезодермой, а полость внутри представляет собой вторичную полость тела (или целом).

Из мезодермы развиваются все виды соединительной ткани, дерма, скелет, поперечно-полосатая и гладкая мускулатура, кровеносная и лимфатическая системы, половая система.

Из материала энтодермы развивается эпителий кишечника и желудка, клетки печени, секретирующие клетки поджелудочной, кишечных и желудочных желез. Передний отдел эмбриональной кишки образует эпителий легких и воздухоносных путей, секретирующие отделы передней и средней доли гипофиза, щитовидной и паращитовидной желез.

Наблюдения за оплодотворенной яйцеклеткой лягушки позволили проследить путь развития клеток, входящих в состав того или иного участка зародыша. Оказалось, что определенные клетки, занимающие соответствующее место в бластуле, дают начало строго определенным зачаткам органов. Удалось выяснить, какие группы клеток дают начало нервной трубке, хорде, мезодерме, кожному эпителию и т.д. Действительно, в развивающемся организме различные группы клеток дают начало определенным органам и тканям, а культивирование клеток вне зародыша (в пробирке) не приводит к формированию типичных тканевых структур, которые должны были бы образоваться из клеток. Чем же вызывается преобразование тех или иных клеток зародыша в конкретные ткани и органы?

В 1924 г. были опубликованы результаты опытов Г.Шпемана и Г.Мангольда, посвященные выяснению этого вопроса (рис. 318). На стадии ранней гаструлы зачаток эктодермы, который в нормальных условиях должен был развиться в структуры нервной системы, из зародыша гребенчатого (непигментриованного) тритона пересаживался под эктодерму брюшной стороны, дающую начало эпидермису кожи, зародыша обыкновенного (пигментированного) тритона. В итоге на брюшной стороне зародыша-реципиента возникала сначала нервная трубка и другие компоненты комплекса осевых органов, а затем формировался дополнительный зародыш. Причем, наблюдения показали, что ткани дополнительного зародыша формируются почти исключительно из клеточного материала реципиента.

Эти данные доказывают, что в ходе эмбриогенеза некоторые части зародыша влияют на пути развития соседних участков. Такое влияние одного зачатка на другой получило название эмбриональной индукции. Насколько важную роль играет эмбриональная индукция в развитии, показывает следующий опыт. Если на стадии ранней гаструлы полностью удалить

При дальнейшем изучении развития зародышей оказалось, что зачаток хордомезодермы представляет собой не только индуктор нервной трубки, но и сам для дифференцировки нуждается в индуцирующем влиянии со стороны зачатка нервной системы. Во время эмбрионального развития имеет место не односторонняя индукция, а взаимодействие частей развивающегося зародыша. Таким образом, эмбриональную индукцию можно определить как явление, при котором в процессе эмбриогенеза один зачаток влияет на другой, определяя путь его развития, и, кроме того, сам подвергается индуцирующему воздействию со стороны первого зачатка.

© равномерным, при котором все образовавшиеся бластомеры имеют одинаковые размеры и форму; оно характерно для алецитальных и изолецитальных яйцеклеток;

Рассмотрим как оплодотворяется яйцеклетка. Оплодотворение происходит при попадании сперматозоида в яйцеклетку. В этот момент начинается выработка специальных ферментов, которые не допустят в яйцеклетку других спермиев. Оплодотворение осуществляется в период овуляции, сам процесс длится около 2-х часов. Но так как сперматозоиды живут достаточно длительный срок, зачатие может случиться и через несколько дней после полового акта.

Бывали случаи когда оплодотворение произошло на седьмой день после коитуса.

На первоначальном этапе никаких изменений в женском организме не происходит. Определить наступление беременности можно только через две недели, когда начнет меняться гормональный фон или менструация не начнется вовремя. Также при наступлении беременности иногда происходят выделения с кровяными сгустками, похожими на месячные. Это происходит из-за имплантации эмбриона в эпителий матки.

Если яйцеклетка не оплодотворяется за 24 часа после начала овуляции она погибает.

Обязательно посмотрите это интересное видео:

Отторжение яйцеклетки

В ряде случаев бывает, что эмбрион воспринимается женским организмом как инородное тело. Это достаточно часто случается при искусственном оплодотворении, поэтому пациентке назначают прием гормональных препаратов для стимуляции беременности. Более подробно о том, почему матка отвергает оплодотворенную яйцеклетку рассказано здесь.

Также отторжение эмбриона может быть при:

  • патологии яйцеклетки;
  • проблемах с эндометрием матки.

На процесс зачатия влияет множество факторов. Поэтому при планировании беременности необходимо тщательно следить за своим здоровьем, правильно питаться и избегать нервных перегрузок, и конечно следовать рекомендациям лечащего врача.

Читайте также:  Может Ли Плодное Яйцо Выйти Частями После Мифепристона

Что нужно для оплодотворения

Успешность оплодотворения зависит от множества факторов. Этому процессу предшествуют сотни других, не менее важных. Зачатие не произойдет, если нарушен процесс созревания и перемещения половых клеток: сперматозоидов и яйцеклеток.

Продвижение сперматозоидов к яйцеклетке

С момента семяизвержения до встречи половых клеток проходит от 3 до 6 часов. Сперматозоиды постоянно двигаются, продвигаясь к месту контакта с яйцеклеткой. Женский организм устроен так, что половые клетки мужчины встречают на этом пути много препятствий, задуманных природой в качестве защитного механизма. Таким образом отсеиваются слабые сперматозоиды, которые потенциально опасны и не подходят для формирования новой жизни.

Во время одного полового акта во влагалище попадает до 300 миллионов сперматозоидов, но только один достигнет цели. Миллионы мужских половых клеток погибают на пути к яйцеклетке и непосредственно рядом с ней. Большинство клеток почти сразу после семяизвержения вытекает вместе со спермой. Огромное количество сперматозоидов гибнет во влагалище и цервикальной слизи шейки матки. Некоторое количество сперматозоидов застревает в складках шейки матки, однако они становятся резервом на тот случай, если первая группа клеток не достигнет ооцита.

Примечательно, что эти застрявшие сперматозоиды являются причиной беременности до овуляции. Всем известно, что оплодотворение становится возможным только после овуляции, но шансы забеременеть есть в любой день цикла. Когда половой акт осуществляется до момента выхода яйцеклетки, эти застрявшие сперматозоиды дожидаются овуляции и продолжают путь к половой клетке. Сперматозоиды могут оставаться «в живых» до 7 суток, поэтому риск забеременеть сохраняется до и после овуляции.

Поскольку сперматозоиды не знакомы иммунной системе женщины, она принимает их за чужеродные элементы и уничтожает. При излишней активности иммунитета женщины можно говорить об иммунологической несовместимости, что может стать причиной бесплодия у пары.

Выжившие после атаки иммунитета сперматозоиды продвигаются в маточные трубы. Контакт со слабощелочной слизью шеечного канала провоцирует повышение активности сперматозоидов, они начинают продвигаться быстрее. Мышечные сокращения помогают сперматозоидам передвигаться внутри матки. Одна часть попадает в фаллопиеву трубу, а другая – в маточную, где находится яйцеклетка. В трубе сперматозоиды должны противостоять току жидкости, а некоторые клетки задерживаются ворсинками слизистой.

На этом этапе в верхних отделах тракта запускаются реакции, провоцирующие капацитацию (дозревание) сперматозоидов. За это ответственны определенные биохимические вещества. Вследствие капацитации мембрана головки спермия меняется, происходит подготовка к проникновению в яйцеклетку. Сперматозоиды становятся гиперактивными.

Созревание и продвижение яйцеклетки

Вне зависимости от длины цикла у конкретной женщины, за 14 дней до менструации происходит овуляция. При стандартном цикле длительностью 27-28 дней выход яйцеклетки из фолликула приходится на середину. Примечательно, что длина цикла у разных женщин отличается и может достигать 45 и более дней. По этой причине специалисты рекомендуют подсчитывать день овуляции ориентируясь на предполагаемое начало менструации. От этой даты нужно отсчитать две недели.

  • За 14 дней до менструации яйцеклетка выходит из фолликула. Случается овуляция. В этот период риск забеременеть наиболее велик.
  • В течение 12-24 часов после овуляции сперматозоид может оплодотворить яйцеклетку. Этот период называют окном фертильности. Через сутки после овуляции яйцеклетка погибает, но это время может сокращаться в зависимости от многих факторов.
  • Если половой акт произошел после выхода яйцеклетки из фолликула, для оплодотворения требуется всего 1-2 часа. За это время сперматозоиды преодолевают 17-20 см от влагалища до маточных труб, учитывая все препятствия.
  • Если соитие произошло до овуляции, оплодотворение возможно в течение недели. Примечательно, что сперматозоиды с Y-хромосомой быстрее, но живут 1-2 дня, а клетки с X-хромосомой медленные, но могут противостоять негативному влиянию среды в течение недели. На этом факте основаны многие методики зачатия ребенка определенного пола.

Овуляция – маленький взрыв фолликула. Яйцеклетка и жидкость, в которой созревал ооцит, попадают в брюшную полость. «Бахрома» фаллопиевых труб включает реснитчатый эпителий, который однонаправленно продвигает яйцеклетку на выход из яичника. Эти реснички активизируются под воздействием эстрогенов – гормонов, выделяемых яичниками после овуляции.

В этот период яйцеклетка окружена кумулюсными клетками, которые формируют лучистый венец. Этот венец содержит фолликулярные клетки и является вторичной оболочкой яйцеклетки. Он становится препятствием для сперматозоида при непосредственном оплодотворении.

С чего начинается беременность

Первую неделю после оплодотворения зигота находится в фаллопиевых трубах. На седьмой день она начинает опускаться в матку и выискивает место для прикрепления. У здоровой женщины на этом этапе утолщен эндометрий матки, поэтому зигота легко закрепляется без существенного риска отторжения. Недостаточность толщины эндометрия нередко становится причиной женского бесплодия.

В период перемещения из фаллопиевых труб в матку яйцеклетка берет питательные вещества из желтого тела, поэтому образ жизни будущей матери не играет важной роли на данном этапе. Однако после прикрепления зиготы к эндометрию ситуация меняется: беременная должна пересмотреть образ жизни и питание, ведь теперь развитие плода всецело зависит от ее поведения. Важно поддерживать нормальное душевное и физическое состояние.

Зигота зарывается в эндометрий, начинается имплантация. Этот процесс занимает примерно 40 часов: делятся клетки, происходит их внедрение в слизистую и последующее разрастание. Активно образовываются кровеносные сосуды, которые в будущем превратятся в плаценту. Зародышевый узелок начинает формировать тело, а поверхностные клетки те части, которые нужны для развития плода (околоплодный пузырь, плацента, пуповина). Завершение имплантации знаменует начало периода беременности, то есть вынашивания ребенка.

Амнион или околоплодный пузырь – мешочек с бесцветными околоплодными водами. Они нужны для защиты хрупкого плода от давления стенок матки, скачков температуры, шума и ударов извне. Помимо этого, околоплодные воды поддерживают обмен веществ.

Плацента является уникальным органом. Он обеспечивает плод всем необходимым для роста, развития и жизнедеятельности. На определенном этапе плацента выполняет функции легких, почек и пищеварения, а также образует гормоны и другие элементы, необходимые для полноценного развития ребенка. Она транспортирует свежую материнскую кровь в пуповинную вену и выводит продукты метаболизма из артерий плода. Плацента – своеобразный фильтр, который защищает плод от вредоносных микроорганизмов и веществ. Пуповина соединяет плод и плаценту. По сосудам внутри нее туда и обратно течет кровь.

3 этапа беременности

Беременность делят на три этапа: формирование тела и органов, чтобы поддерживать жизнеобеспечение плода, настройка систем организма, подготовка к рождению. Несмотря на то, что беременность длится 9 месяцев, в медицине этот период отсчитывают по неделям. От зарождения до появления новой жизни проходит примерно 40 недель, что равняется 10 лунным месяцам (из расчета 28 дней цикла). Поэтому календарь беременности состоит из 10 месяцев. Отслеживать изменения, происходящие в организме беременной, легче именно по такому календарю. Беременная точно знает, на какой неделе ей нужно сдавать анализы и проходить УЗИ .

Едва сперматозоид проник в яйцеклетку, в организме женщины запускаются механизмы, оповещающие другие системы об оплодотворении. Работа органов перестраивается так, чтобы сохранять жизнедеятельность зародыша. Поскольку организм может начать принимать оплодотворенную яйцеклетку за инородное образование, иммунитет ослабевает и не может вызвать отторжение плода.

На начальных этапах развития экстракорпорального оплодотворения (ЭКО) эмбрионы переносили в полость матки на 1е и 2-е сутки после проведения пункции. К настоящему времени наука шагнула далеко вперед и в лаборатории можно создать оптимальные условия для культивирования эмбрионов до стадии бластоцисты (5-е сутки развития). Это стало рутинной практикой благодаря внедрению нового оборудования, такого как мультигазовые инкубаторы, а также новых сред для культивирования эмбрионов.

Читайте также:  Может Ли Запор Влиять На Тонус Матки При Беременности

Перенос эмбрионов в матку на стадии бластоцисты повышает шанс наступления беременности по сравнению с переносом эмбрионов на более ранних стадиях. Культивирование эмбрионов до 5х суток является своеобразной селекцией, поскольку не все эмбрионы достигают стадии бластоцисты.

Однако не всем пациенткам можно рекомендовать этот метод. У пациенток со сниженным овариальным резервом, тяжелым мужским фактором высок риск отмены переноса эмбрионов из-за того, что эмбрионы не смогут достигнуть стадии бластоцисты при культивировании in vitro. Следует также отметить, как бы мы ни пытались в лаборатории создать для эмбриона условия максимально приближенные к естественным (in vivo), мы не сможем их воссоздать на все 100%. При культивировании in vitro мы лишь обеспечиваем оптимальный температурный режим, газовый состав окружающей среды, снабжаем эмбрион питательными веществами. В полости матки помимо прочего, эмбрионы получают различные ростовые факторы и клеточные сигналы от окружающих тканей. Исходя из того, что в полости матки эмбрионы получают наиболее оптимальные условия для своего развития, клиники ВРТ практикуют перенос как на 3-и, так и на 5-е сутки развития эмбриона.

К сожалению, не все эмбрионы дают начало новой жизни. Эмбрион, который не имплантировался, мог погибнуть еще до начала процесса имплантации, что может быть связано с генетическими аномалиями самого эмбриона.

Показано, что до 60% эмбрионов человека могут иметь те или иные генетические поломки. Однако не следует забывать, что сам процесс имплантации также довольно сложен. И даже перенос в полость матки генетически нормально эмбриона отличного качества не гарантирует беременность. Принимающая среда – эндометрий –должна обладать морфологической, биохимической, рецепторной зрелостью. Имплантация – также сложный иммунологический процесс, поскольку эмбрион является чужеродным для организма матери. Любые отклонения могут привести к негативному исходу программы ЭКО.

По Законодательству, в нашей стране разрешено переносить 2 эмбриона, свыше двух эмбрионов переносят при отрицательных предыдущих попытках и низком качестве эмбрионов. Для переноса более 2-х между клиникой и пациентом заключается дополнительное соглашение.

Вероятность многоплодной беременности

Однако если беременность наступает под влиянием лекарственных препаратов или вспомогательных репродуктивных технологий, то вероятность двойни или тройни существенно выше, чем при естественном зачатии. Так, при использовании лекарственных препаратов для стимуляции овуляции (например, Кломифен, Клостилбегит и т.д.) вероятность многоплодной беременности возрастает до 6 – 8%. Если же для улучшения шансов на зачатие применялись препараты, содержащие гонадотропин, то вероятность двойни составляет уже 25 – 35%. Если женщина беременеет при помощи вспомогательных репродуктивных технологий (ЭКО), то вероятность многоплодной беременности в такой ситуации составляет от 35 до 40%.

Редукция при многоплодной беременности

Удаление «лишнего» эмбриона при многоплодной беременности называется редукцией. Данную процедуру предлагают женщинам, у которых в матке обнаружено больше двух плодов. Причем в настоящее время редукция предлагается не только женщинам, забеременевшим тройней или четверной в результате ЭКО, но и зачавшим естественным способом одновременно больше двух плодов. Целью редукции является уменьшение риска акушерских и перинатальных осложнений, связанных с многоплодной беременностью. При редукции обычно оставляют два плода, поскольку существует риск самопроизвольной гибели одного из них в дальнейшем.

Процедура редукции при многоплодной беременности осуществляется только с согласия женщины и по рекомендации врача-гинеколога. При этом женщина сама решает, сколько плодов подвергнуть редукции, а сколько оставить. Редукция не проводится на фоне угрозы прерывания беременности и при острых воспалительных заболеваниях любых органов и систем, поскольку на таком неблагоприятном фоне процедура может привести к потере всех плодов. Редукцию можно провести до 10 недель беременности. Если сделать это на более поздних сроках беременности, то остатки плодных тканей будут оказывать раздражающее воздействие на матку и провоцировать осложнения.

В настоящее время редукция производится следующими методами:

  • Трансцервикальный. В канал шейки матки вводится гибкий и мягкий катетер, соединенный с вакуум-аспиратором. Под контролем УЗИ катетер продвигают к эмбриону, подлежащему редукции. После достижения кончиком катетера плодных оболочек редуцируемого эмбриона включают вакуум-аспиратор, который отрывает его от стенки матки и засасывает в емкость. В принципе, трансцервикальная редукция по своей сути – это неполный вакуумный аборт, в ходе которого удаляются не все плоды. Метод довольно травматичный, поэтому в настоящее время используется редко;
  • Трансвагинальный. Производится под наркозом в операционной аналогично процессу забора ооцитов для ЭКО. Биопсийный адаптер вводят во влагалище и под контролем УЗИ пункционной иглой прокалывают эмбрион, подлежащий редукции. После чего иглу извлекают. Данный метод в настоящее время используется наиболее часто;
  • Трансабдоминальный. Проводится в операционной под наркозом аналогично процедуре амниоцентеза. На брюшной стенке делают прокол, через который в матку под контролем УЗИ вводят иглу. Этой иглой прокалывают эмбрион, подлежащий редукции, после чего вынимают инструмент.

Любой метод редукции является технически сложным и опасным, поскольку в 23 – 35% случаев в качестве осложнения происходит потеря беременности. Поэтому многие женщины предпочитают столкнуться с тяжестью вынашивания нескольких плодов, чем потерять всю беременность. В принципе, современный уровень акушерской помощи позволяет создавать условия для вынашивания многоплодной беременности, в результате которой рождаются вполне здоровые дети.

Любой метод редукции является технически сложным и опасным, поскольку в 23 – 35% случаев в качестве осложнения происходит потеря беременности. Поэтому многие женщины предпочитают столкнуться с тяжестью вынашивания нескольких плодов, чем потерять всю беременность. В принципе, современный уровень акушерской помощи позволяет создавать условия для вынашивания многоплодной беременности, в результате которой рождаются вполне здоровые дети.

Давайте будем совместно делать уникальный материал еще лучше, и после его прочтения, просим Вас сделать репост в удобную для Вас соц. сеть.

Оцените статью
Помогаем при ведении беременности советом — есть вопросы? Задавайте